Juval Lowy

WCF ESSENTIALS

Discover
Instance Management

nstance management refers to a set of techniques used ‘ Per-Call Services

by Windows® Communication Foundationtobind | Per-call services are the Windows Communication Foundation
aset of messages to aservice instance. Its necessary | default instantiation mode. When the service type is configured
because applications widely differ in their needs for | for per-call activation, a service instance, a common language
scalability, performance, throughput, transactions, | runtime (CLR) object, exists only while a client call is in progress.
and queued calls, and there simply isn’t a one-size- | Every client request gets a new dedicated service instance. Figure 2
fits-all solution to address these varied demands. Understanding | illustrates how this single-call activation works.

instance management is essential to developing scalable and con-
sistent service-oriented applications. This article provides the ra-
tionale for various instance management modes, offers guidelines

for when and how to use them, and discusses some related top- | i . .
ics such as behaviors, contexts, demarcating operations, and in- This article uses the following technologies:

VL S R Windows Communication Foundation

By and large, the service instance mode is strictly a service-side | ~ This article discusses:
implementation detail that should not manifest itself on the cli- + Per-call services
entside. To support thatand a few otherlocal service-side aspects, | ; per.session services
Windows Communication Foundation defines the notion of be- |
haviors. A behavior is a local attribute of a service that does not
affect its communication patterns.

The ServiceBehaviorAttribute configures service behaviors—a | Code download available at;
behavior that affects all endpoints of the service and is applied di- msdn.microsoft.com/msdnmag/code06.aspx
rectly on the service implementation class. As shown in Figure 1,the | jyya) towyis a software architect with IDesign providing Windows Communication Founda-
attribute defines the InstanceContextMode property of the enum tion training and architecture consulting. Juval is currently working on a comprehensive

type InstanceContextMode whose value controls which instance Windows Communication Foundation book. He is also the Microsoft Regional Director for
s : the Silicon Valley. Contact Juval at www.idesign.net.
mode is used for the service.

This article is based on a prerelease version of WinFX. All informa-

tion herein is subject to change.

+Shareable services
+ Instance deactivation

80 msdnmagazine

Figure 1 InstanceContextMode ;

public enum InstanceContextMode

PerCall, PerSession, Shareable, Single

}

[AttributeUsage(AttributeTargets.Class)]
public sealed class ServiceBehaviorAttribute :
L

Attribute,

public InstanceContextMode InstanceContextMode {get;set;}
. // More members

1. The client calls the proxy and the proxy forwards the call to
the service.

2. Windows Communication Foundation creates a service in-
stance and calls the method on it.

3.After the method call returns, if the object implements
[Disposable, then Windows Communication Foundation
calls IDisposable.Dispose on it.

Because InstanceContextMode.PerCall is the default value for
the property, there is no need to actually apply the attribute.

- Consequently, the following two definitions are equivalent:

class MyService : IMyContract {...}

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyService : IMyContract {...}

Although in theory you can use per-call instance activation

' mode on any service, in practice, you need to design the service
- and its contracts to support per-call activation mode from the
'~ ground up. The main problem is that the client doesn’t know it’s
- gettinga new instance each time.

Ifa per-call service must be state-aware, meaning that state from

- one call must persist to a future call, the implementation itself must

' proactively manage the

| illusion of a continuous ses-
| sion. An instance of a per-

Inthe classic client-server programming model, using languages |

such as C++ or C#, every client gets its own dedicated server ob-

- before every method call

ject. The fundamental problem with this approach is that it doesn’t |
scale well. The server object may hold expensive or scarce resourc-
es such as database connections, communication ports, or files. |

Imagine an application that has to serve many clients. Typically, |
- age,andat the end of the call it should return its state to the storage.

these clients create the objects they need when the client applica-

tion starts and dispose of them when the client application shuts
down. What impedes scalability with the client-server model is

that the client applications can hold onto objects for long periods
~ tainsadatabase connection, the object must reacquire the connec-

of time, while actually using the objects for only a fraction of that

time. If you allocate an object for each client, you will tie up such
crucial or limited resources for long periods of time and you will |

state, giving the client the
There are no hard-and-fast

rules as to when and to what

extent you should trade
some performance for a lot
of scalability.

call service is created just

and destroyed immediately
after each call. Therefore, at
the beginning of each call,
the object should initialize its state from values saved in some stor-

Such storage is typically either a database or the file system, but it
can also be volatile storage like static variables. However, not all of
the object’s state can be saved as-is. For example, if the state con-

tion at construction or at the beginning of every call and dispose
of the connection at the end of the call or in its implementation

eventually run out of resources.
Abetteractivation model is to allocate
an object for a client only while a call is
in progress from the client to the service.
That way, you have to create and maintain
only as many objects in memory as there

of IDisposable.Dispose.

Using per-call instance mode has one
important implication for operation
design: every operation must include
a parameter to identify the service in-
stance whose state needs to be retrieved.

_ Per-Call
Service

are concurrent calls, not as many objects

Figure 2 Per-Call Instantiation

as there are outstanding clients. Between calls, the client holds a |
- services processing orders,and so on. Figure 3 shows a template for

reference on a proxy that doesn’t have an actual object at the end

of the wire. The obvious benefit is that you can now dispose of the |
expensive resources the service instance occupies long before the |
client disposes of the proxy. By that same token, acquiring the re-
sources is postponed until they are actually needed by a client. The
second benetfit is that forcing the service instance to reallocate or
' The instance then uses the identifier to retrieve its state and to save

connect to its resources on every call caters very well to transac-

tional resources and transactional programming because it eases |
| is common to all clients can be allocated at the constructor and

' disposed of in Dispose.

the task of enforcing consistency with the instance state.
To configure a service type as a per-call service, you can ap-

ply the ServiceBehavior attribute with the InstanceContextMode |
- of work to be done in each method call is small and there are no
| more activities to complete in the background once a method re-

property set to InstanceContextMode. PerCall:
[ServiceContract]
interface IMyContract {...}

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerCall)]
class MyService : IMyContract {...}

Examples for such parameters are the
account number for bank account service, the order number for

implementing a per-call service.

The MyMethod operation accepts a parameter of type Param
(a pseudo-type invented for this example) that identifies the in-
stance, as shown in the following:

public void MyMethod(Param objectIdentifier);

- the state back at the end of the method call. Any piece of state that

Also, the per-call activation mode works best when the amount

turns. For this reason, you should not spin off background threads

' ordispatch asynchronous calls back into the instance because the
- object will be discarded once the method returns.

june2006 81

Per-call services clearly offer a trade-off in performance (the |
overhead of reconstructing the instance state on each method call) |
with scalability (holding onto the state and the resources it ties in). |
There are no hard-and-fast rules as to when and to what extent you |
should trade some performance for alot of scalability. You may need |

to profile your system and ultimately design some services to use
per-call activation and redesign some not to use it.

Per-Session Services

Windows Communication Foundation can maintain a private |
session between a client and a particular service instance. When |

the client creates a new proxy to a service
configured as session-aware, the client gets
anew dedicated service instance that is in-
dependent of all other instances of the same
service. That instance will remain in service
; ; . [ServiceContract]

usually until the client no longer needs it. jytarface IHyContract
Each private session uniquely bindsaproxy
to a particular service instance. Note that

[DataContract]
class Param {...}

[OperationContract]

Figure 3 Implementing a Per-Call Service

void MyMethod(Param objectIdentifier);

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession)]

class MyService : IMyContract {...}

The session typically terminates when the client closes the proxy,
which notifies the service that the session has ended. If the service
supports IDisposable, then the Dispose method will be called.
Figure 4 shows a contract and service configured to use a private
session and their client. As you can see from the output, the client
got a dedicated instance.

The per-session instance mode provides for a session at the ap-
plication level between the client and a service instance. This session
is only as reliable as the underlying channel session. Consequently,
a service that implements a session-aware
contract requires that all the endpoints
that expose the contract use bindings that
support reliable transport session. This
constraint is verified at service load time,
yielding InvalidOperationException if there
is a mismatch. Make sure to use a binding
that supports reliability and that you ex-

the client session has one service instance
per proxy. If the client creates another
proxy to the same or a different endpoint,
that second proxy will be associated with

}

class MyPerCallService : IMyContract, IDisposable
{

public void MyMethod(Param objectldentifier)
{

plicitly enable it at both the client and the
service, either programmatically or ad-
ministratively. One exception to this rule
is the named pipes binding. This binding

anew instance and session.

Because the service instance remains
in memory throughout the session, it
can maintain state in memory, and the
programming model is very much like
that of the classic client-server model. 1}
Consequently, it also suffers from the

DoWork();
}

void DoWork() {...}

same scalability and transaction issues as the classic client-server |

model. A service configured for private sessions cannot typically
support more than a few dozen (or perhaps up to a few hundred)
outstanding clients due to the cost associated with each such dedi-
cated service instance.

Supportinga session has two facets: contractual and behavioral. |

The contractual facet is required across the service boundary be-
cause the client-side Windows Communication Foundation run-
time needs to know it should use a session. The ServiceContract

attribute offers the Boolean property Session:

[AttributeUsage(AttributeTargets. Interface|AttributeTargets.Class,
Inherited=false)]

public sealed class ServiceContractAttribute : Attribute

pubTlic bool Session {get;set;}

y o /1 More members

Session defaults to false. To support sessions, you need to set Session

to true at the contract level:

[ServiceContract(Session = true)]
interface IMyContract {...}

GetState(objectIdentifier);
SaveState(objectIdentifier);
void GetState(Param objectIdentifier) {...}

void SaveState(Param objectIdentifier) {...}
public void Dispose() {...}

is considered a reliable transport and has
no need for the reliable messaging proto-
col. Besides, all calls will be on the same
machine anyway.

Just as reliable transport session is op-
tional, so is ordered delivery of messages,
and Windows Communication Foundation
will provide for a session even when ordered delivery is disabled.
Typically,a client that interacts with a session-aware service expects

| that all messages are delivered in the order they are sent. As such,

ordered delivery is enabled by default when reliable transport ses-

| sion is enabled, so no additional setting is required.

Typically, the session will end once the client closes the proxy.
However, in case the client fails to terminate gracefully or encoun-
ters a communication problem, each session also has an idle time
timeout that defaults to 10 minutes—the session will automatically

| terminate after 10 minutes of inactivity from the client, even if the
" client still intends to use the session. Once the session has termi-
| nated due to the idle timeout, if the client tries to use its proxy, the
' client will get a CommunicationObjectFaulted Exception.

Both the client and the service can configure a different timeout
by setting a different value in the binding. The bindings that sup-

| port reliable transport-level session provide the ReliableSession

property with the InactivityTimeout property used for configur-

ing the idle timeout. For example, the following shows the code

To complete the configuration, you need to instruct Windows |

throughout the session and to direct the client messages to it. This |
local behavior facet is achieved by setting the InstanceContext- |

Mode property of the ServiceBehavior attribute to InstanceCon-
textMode.PerSession, as shown in the following:

82 msdnmagazine Windows Communication Foundation

that is required to programmatically configure an idle timeout of

Communication Foundation to keep the service instance alive = 25 minutes for the TCP binding:

NetTcpBinding tcpSessionBinding = new NetTcpBinding();
tcpSessionBinding.ReliableSession.Enabled = true;

tcpSessionBinding.ReliableSession.InactivityTimeout =
TimeSpan. FromMinutes(25);

Here is the equivalent configuration setting using a config file:

<netTcpBinding>
<binding name="TCPSession">
<reliableSession enabled="true" inactivityTimeout="00:25:00"/>
</binding>
</netTcpBinding>

If both the client and the service configure timeouts, then the
shorter timeout prevails.

Shareable Services

Windows Communication Foundation does notallow youto pass - the two clients. The solution is to have the two clients use separate

object references across service boundaries. Objects are technol-
ogy-specific entities, and sharing objects goes against the grain of
service-oriented, technology-neutral interactions. However, some-
times one client may want to share the current state of its session
with another client. The solution is a shareable service. A shareable
service behaves much like a per-session service, with one impor-

tant additional aspect: the instance has 3 unique ID, and when a | additional addressing headers information required to connect

client establishes a session with a shareable service, the client can |

pass a logical reference to that instance to another client. The sec- | Resoliebiiance methiod st the lClentChanne¥ iterbice

. the participating clients need to coordinate among themselves
| when it is permissible to close the proxies.

' Duplicating a Proxy

Duplicating a proxy is handy when two clients in the same app
domain want to share a service instance. If the two clients share a
proxy reference, then the clients need to coordinate which is re-

| sponsible for closing the proxy and when. This need for coordi-
- nation will introduce an unwanted degree of coupling between

proxies and yet point to the same instance. Because the two prox-

- ies will have independent sessions, each client can close its proxy

without affecting the other.
To duplicate a proxy, create a proxy to the service as usual and

| then explicitly resolve the service instance by creating an endpoint

ond client will establish an independent session but will share the |

same instance. Also, each of these sessions may use different in-

activity timeouts, and expire independently of any other session. |

You configure a shareable service by setting the InstanceContext-

Mode property to InstanceContextMode.Sharable:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Sharable)]
class MyService : IMyContract {...}

There are two ways to take advantage of a shareable service and
both are variations on the same technique. The first is to simply

duplicate a proxy in the same app domain and the second is to pass |

an endpoint address over Windows Communication Foundation
to another client.

Passing around an instance reference presents an interesting
challenge to Windows Communication Foundation: what if the
first client creates the instance, passes a reference to it to a second

client, and closes its proxy before the second client has had the |
chance to create its own proxy using the reference? To deal with that, |
Windows Communication Foundation employs a linger timeout |
that defaults to one minute. Windows Communication Foundation |
keeps track of the sessions wired up to the same instance. Closing |

a proxy by any one of the clients does not dispose of the service

instance. The instance is disposed of when the last session ends |
and the linger timeout has expired. Windows Communication |
Foundation also allows for configuring the linger timeout. In the |
service host config file, add a behaviorConfiguration property to |
the service element, pointing to a behavior section. In that sec- |
tion, set the instanceContextldleTimeout property to the desired |

linger timeout:

{services>
<service type="MySharableService"
behaviorConfiguration="ShortLingerBehaviour™>

</service>
{/services>
<{behaviors>
<behavior name="ShortLingerBehaviour"
instanceContextIdleTimeout="00:05:00" />
{/behaviors>

If the linger timeout is not good enough for your application, then

address reference. This contains the address of the service and some
to the existing instance. To obtain an endpoint reference, use the

public interface IClientChannel : ...
{
EndpointAddress Resolvelnstance();
... 1/ More members
}

You obtain IClientChannel through the InnerChannel property
of the ClientBase<T> proxy base class.

Figure 4 Per-Session Service and Client

Service Code
[ServiceContract(Session = true)]
interface IMyContract

{

[OperationContract]
void MyMethod();
}

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession)]
class MyService : IMyContract,IDisposable
{

int m_Counter = 0;

MyService()
i

Trace.WriteLine("MyService.MyService()");
}

public void MyMethod()
{

m_Counter++;

Trace.WriteLine("Counter = " + m_Counter)
}

public void Dispose()
{
Trace.WriteLine("MyService.Dispose()");
}
)

Client Code
MyContractProxy proxy = new MyContractProxy();
proxy.MyMethod();

proxy.MyMethod();
proxy.Close();

Output
MyService.MyService()
Counter = 1

Counter = 2

MyService.Dispose()

Windows Communication Foundation june2006 83

Figure 5 Duplicating a Proxy

MyContractProxy proxyl = new MyContractProxy():
proxyl.MyMethod();
IC1ientChannel channel = proxyl.InnerChannel;

//For simplicity, just grab binding from first proxy
Binding binding = proxyl.Endpoint.Binding;
EndpointAddress address = channel.ResolvelInstance();

MyContractProxy proxy2 = new MyContractProxy(binding,address);
proxy2.MyMethod();

proxyl.Close();
proxy2.Close();

Calling Resolvelnstance requires an exchange with the service to |
both verify it is configured for sharing and to obtain the instance -
ID. If the service is not configured for sharing, ResolveInstance 3
throws a CommunicationException. Once you have the endpoint |
address, you create a new proxy with it. You can use the proxy con- |
structor that takes the endpoint section name from the config file
and the address, in which case the address in the config file will |

be ignored. Alternatively, you can use the proxy constructor that
takes a binding and address objects. You can also set the endpoint
address explicitly post-construction through the Endpoint prop-

erty of the proxy. Regardless of which method you choose to cre-
ate the proxy, make sure the endpoint addresss transport matches |
that of the binding used. Now you have two distinct proxies that
share the same service instance, albeit in separate sessions. Figure |

5 demonstrates this technique.

Using the same definitions as in Figure 4 except with the service |
configured for InstanceContextMode.Sharable, Figure 5 yields the |

same output as Figure 4.

Sharing an Instance

If the service is configured as shareable, Windows Communication |

Foundation lets you share an instance of that service across ser-

vice boundaries, meaning you can pass a reference to a shared in- |

stance from one client to another over Windows Communication

Foundation. The receiving side needs to expose a contract with an

operation that takes EndpointAddress as a parameter. This sort of

interaction is illustrated in Figure 6. In this figure, the client has a

session with an instance of the shareable Service A:

1. The client obtains an endpoint address from Service A.

2. The client then passes the address over Windows Communication
Foundation to an instance of Service B.

3.Service B constructs a proxy using the endpoint address and

As I just mentioned, the receiving end must implement some
" kind of a contract that can accept an EndpointAddress as a pa-
| rameter, as the following example shows:

[ServiceContract]
interface ISomeContract
{
[OperationContract]
void PassReference(EndpointAddress10 serviceAddress);
i

" EndpointAddress is not serializable. However, you can safely work
'~ around this by using EndpointAddress10, which corresponds to
' the wire-format of WS-Addressing 1.0.

- Assume for a moment that the service implementing ISome-
~ Contract is called MyOtherService and is defined as follows:

class MyOtherService : ISomeContract

{
public void PassReference(EndpointAddress10 serviceAddress)

(
MyContractProxy proxy = new MyContractProxy();
proxy.Endpoint.Address = serviceAddress.ToEndpointAddress();
proxy.MyMethod();
proxy.Close();
}
}

- Using the same definitions as in Figure 4, but with the service con-
' figured for InstanceContextMode.Sharable, the following code
| yields the same output:

MyContractProxy proxyl = new MyContractProxy();
proxyl.MyMethod();

IC1ientChannel channel = proxyl.InnerChannel;
EndpointAddress serviceAddress = channel.Resolvelnstance();

| SomeContractProxy proxy2 = new SomeContractProxy();
| proxy2.PassReference(EndpointAddress10.FromEndpointAddress
(serviceAddress));

proxyl.Close();
proxy2.Close();

[find that a shareable service instance is a cumbersome in-
- stance management technique that probably harbors more harm
than good. It does offer a singular benefit for some specific sharing
- scenarios, but it raises complicated issues with regard to session
management and potential lifecycle coupling if the linger timeout
is inadequate for your application. Try to avoid this technique and
" find a design solution that does not require you to pass a service
reference or share a service instance’s state.

. Singleton Services

The singleton service is the ultimate shareable service. When
" a service is configured as a singleton, all clients get connected
| to the same single well-known instance independently of each
' other, regardless of which endpoint of the service they connect

calls the instance of Service A.

The B instance can also pass the endpoint ad-
dress to another internal client, or pass it to
another service, and so on.

Itis worth noting that while the original cli-
ent and the A instance need to have a session,
and while the B instance (or any client that uses
the address) and the A instance need to have
a session, the client and the B instance do not

Client

to. The singleton service lives forever, and is
only disposed of once the host shuts down.
The singleton is created exactly once when
the host is created.

Using a singleton does not require clients to
maintain a session with the singleton instance,
or to use a binding that supports transport-
level session. If the contract that the client con-
sumes has a session, by closing the proxy the

need to have a session at all.

84 msdnmagazine Windows Communication Foundation

Figure 6 Passing a Reference

client will only terminate the session, not the

singleton instance. In addition, the session will never expire. If the
singleton service supports contracts without a session, those con-
tracts will not be per-call—they too will be connected to the same
instance. With a singleton service, you can’t call Resolvelnstance.

Having a singleton implies the singleton has some valuable state
that you want to share across multiple clients. The problem is that
when multiple clients connect to the singleton, they may all do so

' concurrently on multiple worker threads. The singleton must syn-

The reason is obvious: by its very nature the singleton is shared, |
| means that only one client at a time can access the singleton. This

and each client should simply create its own proxies to it.

You configure a singleton service by setting the InstanceContext- |
| singleton is unusable as the system grows.

Mode property to InstanceContextMode.Single:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.Single)]
class MySingleton : ...
L

one that requires a session and one that does not require one. As

sult in terminating the singleton.

chronize access to its state to avoid state corruption. This in turn
may degrade responsiveness and availability to the point that the

In general, use a singleton object if it maps well to a natural sin-

' gleton in the application domain. A natural singleton is a resource

using just the default constructor. Perhaps initializing the scarce re- |
source the singleton manages takes too much time and youwould |

not want to penalize the first client. Perhaps initializing that state
requires some custom steps or specific knowledge not available to

the clients (or the clients should not be bothered). To support such |

scenarios, Window Communication Foundation allows you to cre-

ate the singleton instance directly using normal CLR instantiation |
beforehand, initialize the instance,and then open the host with that |

instance in mind as the singleton service. The ServiceHost class
offers a dedicated constructor that accepts an object:

public class ServiceHost : ServiceHostBase,...
{
public ServiceHost(object singletoninstance,
params Uri[] baseAddresses);
public virtual object SingletonInstance { get; }
... // More members

}

Note that the object must be configured as a singleton. For ex- |
ample, consider the code in Figure 8. The class MySingleton will be |
first initialized and then hosted as a singleton. The client making |

the first call will be connected to the already initialized instance.

If you do initialize and host a singleton this way, you may also |

want to access it directly on the host side. Windows Communication
Foundation enables downstream objects to reach back into the sin-

gleton directly using the SingletonInstance property of ServiceHost. |
Any party on the call chain leading down from an operation call |
on the singleton can always access the host through the operation

context’s read-only Host property:

public sealed class OperationContext : ...
{

public ServiceHostBase Host {get;}

... [/ More members

}

Once you have the singleton reference you can interact with it |

directly, like shown here:

ServiceHost host = OperationContext.Current.Host as ServiceHost;
Debug.Assert(host != null);

MySingleton singleton = host.SingletonInstance as MySingleton;
Debug.Assert(singleton = null);

singleton.Counter = 388;

If no singleton instance is provided to the host, SingletonInstance

returns null.

Figure 7 demonstrates a singleton service with two contracts, | tbat is by its very nature single and unique. E xamples ofnatura}l
| singletons are a global logbook that all services should log their

you can see from the client call, the calls on the two endpoints are | 1 su?gle COmMECHONPart; oS smgle Cdianics]
routed to the same instance, and closing the proxies does not re- | motor. Avoid using a singleton if there is even the slightest chance

that the business logic will allow more than one such service in

2 ; duifs . i i rora nd communi-
Sometimes you may not want to create and initialize the singleton | HasRifiec s aniet momoiiion S S eol & UREY

Figure 7 Singleton Service and Client

Service Code

[ServiceContract(Session=true)]
interface IMyContract

[OperationContract]
void MyMethod();

[ServiceContract]
interface IMyOtherContract
{
[OperationContract]
void MyOtherMethod();
}

[ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)]
class MySingleton : IMyContract, IMyOtherContract, IDisposabie
{

int m_Counter = 0;
public MySingleton()
{
Trace.WriteLine("MyService.MyService()");

}
public void MyMethod()
i
m_Counter++;
Trace.Writeline("Counter = " + m_Counter);

}
public void MyOtherMethod()

{
m_Counter+t;
Trace.Writeline("Counter = " + m_Counter);
}
public void Dispose()
{
Trace.Writeline("MyService.Dispose()");
]
)
Client Code

MyContractProxy proxyl = new MyContractProxy();
proxyl.MyMethod();
proxyl.Close();

MyOtherContractProxy proxy2 = new MyOtherContractProxy();
proxy2.MyOtherMethod();
proxy2.Close();

Output
MyService.MyService()
Counter = 1

Counter = 2

Windows Communication Foundation June2006 87

Figure 8 Initializing and Hosting a Singleton

Service Code

[ServiceContract]
interface IMyContract
{

[OperationContract]

void MyMethod();
}
[ServiceBehavior(InstanceContextMode=InstanceContextMode.Single)]

class MySingleton : IMyContract
i
int m_Counter = 0;
//Accesses m_Counter
public int Counter {get;set;}
public void MyMethod()
{
m_Counter++;
Trace.WriteLine("Counter = " + Counter);
}
}
Host Code

MySingleton singleton = new MySingleton();
singleton.Counter = 42;

ServiceHost host = new ServiceHost(singleton);
host.0pen();

Client Code

MyContractProxy proxy = new MyContractProxy();
proxy.MyMethod();

proxy.Close();

Output

Counter = 43

cation port. The reason is clear: if your clients all depend on being
implicitly connected to the well-known instance and more than |
one service instance is available, the clients would suddenly need |
to have a way to bind to the correct instance. This can have severe
'~ ent in a new session, and the method can only be part of an on-
| going session.

implications on the application’s programming model.

Demarcating Operations

Sometimes when dealing with session contracts there is an im- |
plied order to operation invocations. Some operations cannot be |
called first while other operations must be called last. For example, |

consider this contract used to manage customer orders:

[ServiceContract(Session = true)]
interface I0rderManager

[OperationContract]
void SetCustomerId(int customerld);
[OperationContract]
void AddItem(int itemId);
[OperationContract]
decimal GetTotal();
[OperationContract]
bool ProcessOrders();

}

The contract has the following constraints: the client must first
provide the customer ID against which items are added; then the

total is calculated. When the order processing is complete, the ses- |

sion is terminated.

Windows Communication Foundation allows contract de- |

signers to designate contract operations as operations that can

or cannot start or terminate the session using the IsInitiating and

IsTerminating properties of the OperationContract attribute:
[AttributeUsage(AttributeTargets.Method)]

88 msdnmagazine Windows Communication Foundation

public sealed class OperationContractAttribute : Attribute

{
public bool IsInitiating {get;set;}
public bool IsTerminating {get;set;}
... // More members

}

Using these properties may demarcate the boundary of the ses-
sion, so I call this technique demarcating operations. Both a ses-
sion-aware service and a singleton can implement a contract that
uses demarcating operations to manage their client sessions.

The default values of these properties are IsInitiating set to true
and IsTerminating set to false. Consequently these two definitions
are equivalent, as shown here:

[ServiceContract(Session = true)]
interface IMyContract
{
[OperationContract]
void MyMethod()
}

[ServiceContract(Session = true)]
interface IMyContract

[OperationContract(IsInitiating = true, IsTerminating = false)]
void MyMethod()
}

By default, operations do not demarcate the session bound-
ary—they can be called first, last, or between any other operation

' in the session. Using non-default values enables you to dictate that
- amethod is not called first, or that it is called last, or both, to en-
. force the interaction constraints (see Figure 9).

When IsInitiating is set to true (the default), it means the op-
eration will start a new session if it is the first method called by
the client, but that it will be part of the ongoing session if another
operation is called first. When IsInitiating is set to false, it means
the operation can never be called as the first operation by the cli-

When IsTerminating is set to false (the default), the session con-
tinues after the operation returns. When IsTerminating is set to true,

Figure 9 Specifying Demarcating Operations

Service Code

[ServiceContract(Session = true)]
interface IOrderManager
{

[OperationContract]
void SetCustomerId(int customerId);

[OperationContract(IsInitiating = false)]
void AddItem(int itemId);

[OperationContract(IsInitiating = false)]
decimal GetTotal();

[OperationContract(IsInitiating = false, IsTerminating = true)]
bool ProcessOrders();
}

Client Code

OrderManagerProxy proxy = new OrderManagerProxy();
proxy.SetCustomer1d(123);

proxy.AddItem(4);

proxy.AddItem(5);

proxy.AddItem(6);

proxy.ProcessOrders();

proxy.Close();

the session terminates once the method
returns,and the client will not be able to
issue additional calls on the proxy. Note
that the client must still close the proxy
because the operation does not dispose
of the service instance—it simply rejects

Service Host
Endpoints i

Context

CLR Interface

Service
.

client blocks, the incoming thread handles
the process of deactivating the instance
and calling dispose before the call occurs.
This ensures that the deactivation is in-
deed done before the call and not concur-
rently. ReleaseInstanceMode.BeforeCall is

Context

subsequent calls.

Figure 10 Contexts and Instances

Instance Deactivation

The session-aware service instance management technique as
described so far connectsa client (or clients) to a service instance.
The real picture is more complex. Each service instance is hosted
in a context, as shown in Figure 10.

Sessions actually correlate the client messages not to the in-
stance, but to the context that hosts it. When the session starts,
the host creates a new context. When the session ends, the context
is terminated. By default, the lifeline of the context is the same as
that of the instance it hosts. However, for optimization purposes,
Windows Communication Foundation provides the service de-
signer with the option of separating the two lifelines and deacti-
vating the instance separately from its context. In fact, Windows
Communication Foundation also allows the situation of a context
that has no instance at all. I call this instance management tech-
nique context deactivation. The usual way for controlling context
deactivation is through the ReleaseInstanceMode property of the

designed to optimize methods like Open,
which acquire some valuable resources
and yet want to release the previously allocated resources. Instead
of acquiring the resource when the session starts, you wait on the
Open method, and then both release the previously allocated re-
sources and allocate new ones. After Open is called you are ready
to start calling other methods on the instance. These methods are
typically configured with ReleaseInstanceMode.None.

When a method is configured with ReleaseInstanceMode. After-
Call, Windows Communication Foundation deactivates the instance
afterthe call (seeFigure 11). Thisis designed to optimize methods (such
as Close) that clean up valuable resources the instance holds, without
waiting for the session to terminate. ReleaseInstanceMode. AfterCall
is typically applied on methods called after methods that have been
configured with ReleaseInstanceMode.None.

When a method is configured with ReleaseInstanceMode.Be-
foreAndAfterCall it has the combined effect , as its name implies,
of ReleaselnstanceMode. BeforeCall and ReleaselnstanceMode. Af-
terCall. If the context has an instance before the call is made, then

OperationBehavior attribute:

public enum ReleaselnstanceMode
{

None, BeforeCall, AfterCall, BeforeAndAfterCall
}
[AttributeUsage(AttributeTargets.Method)]
pubTic sealed class OperationBehaviorAttribute :

{
public ReleaselnstanceMode ReleaseInstanceMode {get;set;}
... // More members

Attribute, ...

The various values of ReleaselnstanceMode specify when
to release the instance in relation to the method call: be-
fore, after, before and after, or not at all. When releasing the
instance, if the service supports IDisposable, the Dispose
method is called.

You typically apply instance deactivation only on some,
but notall, of the service methods, or with different values
on different methods. If you were to apply it uniformly, you
would end up with a per-call-like service, so you might
as well have configured it that way. If relying on instance
deactivation assumes a certain call order, you can try and
enforce that order using demarcating operations.

The default value for the ReleaseInstanceMode prop-
erty is ReleaseInstanceMode.None. ReleaseInstance-
Mode.None means that the instance lifeline is not affected
by the call, as shown in Figure 11.

When a method is configured with ReleaseInstance-
Mode.BeforeCall, if there is already an instance in the
session, Windows Communication Foundation will deac-
tivate it, create a new instance in its place, and let that new

ReleaselnstanceMode.None

Method Calls
None None None

} ReleaselnstanceMode.BeforeCall

Session

Session

ReleaselnstanceMode.AfterCall
Session

ReleaselnstanceMode.BeforeAndAfterCall
Session

Method Calls

Instances

Method Calls

Instances

Method Calls

BeforeAndAfterCall AfterCall

Instances i

instance service the call (as shown in Figure 11). While the

Figure 11 Comparing Instance Deactivation Modes
Windows Communication Foundation june2006 89

Windows Communication Foundation deactivates that instance |

just before the call, creates a new instance to service the call, and
deactivates the new instance after the call, as shown in Figure 11.

is done per service type—that is, it affects all instances of the ser-
vice and all its endpoints. This is done by associating the throttle

' with every channe] dispatcher the service uses.

ReleaselnstanceMode. BeforeAnd AfterCall may look superflu- |
ous at first glance, but it actually complements the other values. It |
is designed to be applied to methods called after methods marked |
| concurrently active instances and the number of concurrent ses-

with ReleaselnstanceMode.BeforeCall/None or before methods
marked with ReleaseInstanceMode.AfterCall/None. Consider a

situation where the session-aware service wants to benefit from |
state-aware behavior (like a per-call service), while holding onto |
number of instances is actually the same as the number of con-

resources just when needed to optimize resource allocation and

security lookup. If ReleaseInstanceMode. BeforeCall was the only |

available option, there would be a period of time after the calls when
the resources would still be allocated to the object but not in use. A
similar situation would occur if ReleaseInstanceMode. AfterCall

time before the call when the resource would be wasted.

Windows Communication Foundation allows you to control
the service consumption parameters shown in Figure 13. With a
per-session service, Max Instances is both the total number of

sions. With a shared-session service, Max Instances is just the to-
tal number of concurrently active instances (since each shared
instance can have multiple sessions). With a per-call service, the

current calls. Consequently, the maximum number of instances
with a per-call service is the minimum of Max Instances and Max

" Concurrent Calls. Max Instances is ignored with a singleton ser-
| vice since it can only have a single instance anyway.
was the only available option, because there would be a period of |

| Configuring Throttling

Instead of making a design-time decision on which methodsto |
use to deactivate the instance, you can make a run-time decision |
to deactivate the instance after the method returns. You do thatby |

calling the ReleaseServicelnstance method on the instance con-

text. You obtain the instance context through the InstanceContext |
- file. Using the behaviorConfiguration tag you add to your service
' acustom behavior that sets throttled values.

property of the operation context:

public sealed class InstanceContext :
{
public void ReleaseServicelnstance();
... 1] More members

CommunicationObject,...

public sealed class OperationContext : ...

{
public InstanceContext InstanceContext {get;}
... I/ More members

}
Figure 12 demonstrates this technique.

Throttling is typically configured in the config file. This enables
you to throttle the same service code differently over time or across
deployment sites. The host can also programmatically configure
throttling based on some run-time decisions.

Figure 14 shows how to configure throttling in the host config

The host process can programmatically throttle the service

| based on some run-time parameters. You can only do so before
| the host is opened. Although the host can override the throttling

Figure 12 Using ReleaseServicelnstance

Calling ReleaseServicelnstance has a similar effect as using |
ReleaselnstanceMode. AfterCall. When used in a method deco- |
rated with ReleaseInstanceMode.BeforeCall, it has a similar effect |

as using ReleaselnstanceMode.BeforeAnd AfterCall.

Instance deactivation is an optimization technique, and like all |

such techniques it should be avoided in general cases. Consider

using instance deactivation only after failing to meet both your |
performance and scalability goals and when careful examina- |
tion and profiling has proven beyond a doubt that using it will |

improve the situation. If scalability and throughput are your con-

cern, choose the simplicity of the per-call instancing mode, and

b
Figure 13 ServiceThrottle Parameters

While not a direct instance management technique, throttling |

avoid instance deactivation.

Throttling

enables you to restrain client connections and the load they place |
on your service. Throttling allows you to avoid maxing-out your

service and the underlying resources it allocates and uses.

The default throttling setting is unlimited. When engaged, if |
the throttling settings you configured are exceeded, Windows |
Communication Foundation automatically places the pending call-

ersina queue and serves them out of the queue in order. Throttling

[ServiceContract(Session = true)]
interface IMyContract
{
[OperationContract]
void MyMethod();
I

[ServiceBehavior(InstanceContextMode=InstanceContextMode.PerSession)]
class MyService : IMyContract,IDisposable
{

public void MyMethod()

//Do some work then
OperationContext.Current.InstanceContext.
ReleaseServiceInstance();
}

public void Dispose() {...}

Parameter Description

MaxConnections The overall number of outstanding clients con-
nected to the service.

Max Concurrent The total number of calls currently in progress

Calls across all service instances.

The total number of contexts concurrently alive.
How instances map to contexts is a product of
the instance context management mode.

Max Instances

Windows Communication Foundation june2006 91

Figure 14 Administrative Throttling

{system.serviceModel>
{services>
{service type = "MyService"
behaviorConfiguration = "ThrottledBehavior">

</service>
</services>
<behaviors>
<behavior name="ThrottledBehavior">
<throttling
maxConcurrentCalls = "12"
maxConnections = "34"
maxInstances = "56"
>
</behavior>
</behaviors>
</system.serviceModel>

Figure 15 Programmatic Throttling

ServiceHost host = new ServiceHost(typeof(MyService));

ServiceThrottlingBehaviar throttle;
throttle = host.Description.Behaviors.Find<ServiceThrottlingBehavior>();

if(throttle == null)

{
throttle = new ServiceThrottlingBehavior();
throttle.MaxConcurrentCalls = 12;
throttle.MaxConnections = 34;
throttle.MaxInstances = 56;
host.Description.Behaviors.Add(throttle);

}

host.Open();

Figure 16 Reading the Throttled Values

class MyService : ...
public void MyMethod() //Contract operation
{

ChannelDispatcher dispatcher = OperationContext.Current.Host.
ChannelDispatchers[0] as ChannelDispatcher;

ServiceThrottle serviceThrottle = dispatcher.ServiceThrottle;

Trace.WriteLine("MaxConcurrentCalls = " +
serviceThrottle.MaxConcurrentCalls);

Trace.WriteLine("MaxConnections = " +
serviceThrottle.MaxConnections);

Trace.WriteLine("MaxInstances = " + serviceThrottle.MaxInstances);

behavior found in the config file by removing the configuration |
and adding its own, you typically should provide a programmatic |
throttling behavior only when there is no throttling behavior in |

the config file.

The ServiceHostBase class offers the Description property of |

the type ServiceDescription:

public class ServiceHostBase : ...

{
public virtual ServiceDescription Description {get;}
... // More members

}

Asits name implies, the service description is the description of |
the service with all its aspects and behaviors. ServiceDescription |

92 msdnmagazine Windows Communication Foundation

. containsa property called Behaviors of the type KeyedBy TypeCol-

| lection<I> with IServiceBehavior as the generic parameter:

public class KeyedByTypeCollection<I> : KeyedCollection<Type,I>
{

public T Find<T>();

public T Remove<T>();

... I/ More members

}

pubTlic class ServiceDescription

{
public KeyedByTypeCollection<IServiceBehavior> Behaviors {get;)
}

- IServiceBehavior is the interface that all behavior classesand at-
' tributes implement. KeyedBy TypeCollection<I> offers the generic
" method Find<T>, which returns the requested behavior if it is in
- the collection and null otherwise. A given behavior type can only
' be found once in the collection at most.

" Figure 15 shows how to set the throttled behavior programmatical-
' ly. First the hosting code verifies that no service throttling behavior
" is provided in the config file. This is done by calling the Find<T>
- method of KeyedByTypeCollection<I> using ServiceThrot-
 tlingBehavior as the type parameter. ServiceThrottlingBehavior

- is defined in the System.ServiceModel. Design namespace:
public class ServiceThrottlingBehavior : IServiceBehavior
(

public int MaxConcurrentCalls {get;set;}
public int MaxConnections {get;set;}
public int MaxInstances {get;set;}
... // More members

}

| If the returned throttle is null, the hosting code creates a new
~ ServiceThrottlingBehavior, sets its values, and adds it to the be-
| haviors in the service description.

| Reading Throttled Values

The throttled values can be read at run time by service develop-
. ers for diagnostics and analysis purposes. The service instance can
" access at run time its throttled properties from its dispatcher. First,
' obtain a reference to the host from the operation context. The host
 base class ServiceHostBase offers the read-only ChannelDispatchers
- property—asstrongly typed collection of ChannelDispatcherBase
'~ objects. Each item in the collection is of the type ChannelDispatcher.
* ChannelDispatcher offers the property ServiceThrottle which con-
tains the configured throttled values (see Figure 16).

| Note that the service can only read the throttled values,and has
" no way of affecting them. If the service tries to set throttled values
- it will get an InvalidOperationException.

Conclusion

While every application is unique when it comes to scalabil-
' ity, performance, and throughput, Windows Communication
" Foundation does offer canonical instance management tech-
" niques that are applicable across the range of applications, thus
' enabling a wide variety of scenarios and programming models.
. Understanding Windows Communication Foundation instance
' management and choosing the right activation mode is critical.
" Yetapplying each mode is surprisingly easy to accomplish. In ad-
dition, you can augment the straightforward modes with demar-
cating operations and instance deactivation.]

